Copied to
clipboard

G = C338M4(2)  order 432 = 24·33

4th semidirect product of C33 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial

Aliases: C338M4(2), C12.71S32, C33(C24⋊S3), C6.7(S3×Dic3), C337C810C2, (C3×C12).166D6, C326(C8⋊S3), C3⋊Dic3.4Dic3, C31(D6.Dic3), C329(C4.Dic3), (C32×C12).68C22, (C3×C3⋊C8)⋊7S3, C3⋊C84(C3⋊S3), (C6×C3⋊S3).6C4, (C4×C3⋊S3).6S3, C4.26(S3×C3⋊S3), C6.18(C4×C3⋊S3), (C12×C3⋊S3).1C2, C12.41(C2×C3⋊S3), (C32×C3⋊C8)⋊12C2, (C3×C6).46(C4×S3), C2.3(Dic3×C3⋊S3), (C2×C3⋊S3).4Dic3, (C3×C3⋊Dic3).5C4, (C32×C6).35(C2×C4), (C3×C6).51(C2×Dic3), SmallGroup(432,434)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C338M4(2)
C1C3C32C33C32×C6C32×C12C32×C3⋊C8 — C338M4(2)
C33C32×C6 — C338M4(2)
C1C4

Generators and relations for C338M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, dcd-1=c-1, ce=ec, ede=d5 >

Subgroups: 600 in 152 conjugacy classes, 50 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C4.Dic3, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, C3×C24, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, D6.Dic3, C24⋊S3, C32×C3⋊C8, C337C8, C12×C3⋊S3, C338M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C3⋊S3, C4×S3, C2×Dic3, S32, C2×C3⋊S3, C8⋊S3, C4.Dic3, S3×Dic3, C4×C3⋊S3, S3×C3⋊S3, D6.Dic3, C24⋊S3, Dic3×C3⋊S3, C338M4(2)

Smallest permutation representation of C338M4(2)
On 144 points
Generators in S144
(1 52 84)(2 85 53)(3 54 86)(4 87 55)(5 56 88)(6 81 49)(7 50 82)(8 83 51)(9 135 63)(10 64 136)(11 129 57)(12 58 130)(13 131 59)(14 60 132)(15 133 61)(16 62 134)(17 125 120)(18 113 126)(19 127 114)(20 115 128)(21 121 116)(22 117 122)(23 123 118)(24 119 124)(25 143 47)(26 48 144)(27 137 41)(28 42 138)(29 139 43)(30 44 140)(31 141 45)(32 46 142)(33 66 112)(34 105 67)(35 68 106)(36 107 69)(37 70 108)(38 109 71)(39 72 110)(40 111 65)(73 93 104)(74 97 94)(75 95 98)(76 99 96)(77 89 100)(78 101 90)(79 91 102)(80 103 92)
(1 133 22)(2 23 134)(3 135 24)(4 17 136)(5 129 18)(6 19 130)(7 131 20)(8 21 132)(9 124 86)(10 87 125)(11 126 88)(12 81 127)(13 128 82)(14 83 121)(15 122 84)(16 85 123)(25 39 77)(26 78 40)(27 33 79)(28 80 34)(29 35 73)(30 74 36)(31 37 75)(32 76 38)(41 112 102)(42 103 105)(43 106 104)(44 97 107)(45 108 98)(46 99 109)(47 110 100)(48 101 111)(49 114 58)(50 59 115)(51 116 60)(52 61 117)(53 118 62)(54 63 119)(55 120 64)(56 57 113)(65 144 90)(66 91 137)(67 138 92)(68 93 139)(69 140 94)(70 95 141)(71 142 96)(72 89 143)
(1 15 117)(2 118 16)(3 9 119)(4 120 10)(5 11 113)(6 114 12)(7 13 115)(8 116 14)(17 64 87)(18 88 57)(19 58 81)(20 82 59)(21 60 83)(22 84 61)(23 62 85)(24 86 63)(25 89 110)(26 111 90)(27 91 112)(28 105 92)(29 93 106)(30 107 94)(31 95 108)(32 109 96)(33 137 102)(34 103 138)(35 139 104)(36 97 140)(37 141 98)(38 99 142)(39 143 100)(40 101 144)(41 79 66)(42 67 80)(43 73 68)(44 69 74)(45 75 70)(46 71 76)(47 77 72)(48 65 78)(49 127 130)(50 131 128)(51 121 132)(52 133 122)(53 123 134)(54 135 124)(55 125 136)(56 129 126)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 70)(2 67)(3 72)(4 69)(5 66)(6 71)(7 68)(8 65)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(17 94)(18 91)(19 96)(20 93)(21 90)(22 95)(23 92)(24 89)(25 63)(26 60)(27 57)(28 62)(29 59)(30 64)(31 61)(32 58)(33 56)(34 53)(35 50)(36 55)(37 52)(38 49)(39 54)(40 51)(73 115)(74 120)(75 117)(76 114)(77 119)(78 116)(79 113)(80 118)(81 109)(82 106)(83 111)(84 108)(85 105)(86 110)(87 107)(88 112)(97 125)(98 122)(99 127)(100 124)(101 121)(102 126)(103 123)(104 128)(129 137)(130 142)(131 139)(132 144)(133 141)(134 138)(135 143)(136 140)

G:=sub<Sym(144)| (1,52,84)(2,85,53)(3,54,86)(4,87,55)(5,56,88)(6,81,49)(7,50,82)(8,83,51)(9,135,63)(10,64,136)(11,129,57)(12,58,130)(13,131,59)(14,60,132)(15,133,61)(16,62,134)(17,125,120)(18,113,126)(19,127,114)(20,115,128)(21,121,116)(22,117,122)(23,123,118)(24,119,124)(25,143,47)(26,48,144)(27,137,41)(28,42,138)(29,139,43)(30,44,140)(31,141,45)(32,46,142)(33,66,112)(34,105,67)(35,68,106)(36,107,69)(37,70,108)(38,109,71)(39,72,110)(40,111,65)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92), (1,133,22)(2,23,134)(3,135,24)(4,17,136)(5,129,18)(6,19,130)(7,131,20)(8,21,132)(9,124,86)(10,87,125)(11,126,88)(12,81,127)(13,128,82)(14,83,121)(15,122,84)(16,85,123)(25,39,77)(26,78,40)(27,33,79)(28,80,34)(29,35,73)(30,74,36)(31,37,75)(32,76,38)(41,112,102)(42,103,105)(43,106,104)(44,97,107)(45,108,98)(46,99,109)(47,110,100)(48,101,111)(49,114,58)(50,59,115)(51,116,60)(52,61,117)(53,118,62)(54,63,119)(55,120,64)(56,57,113)(65,144,90)(66,91,137)(67,138,92)(68,93,139)(69,140,94)(70,95,141)(71,142,96)(72,89,143), (1,15,117)(2,118,16)(3,9,119)(4,120,10)(5,11,113)(6,114,12)(7,13,115)(8,116,14)(17,64,87)(18,88,57)(19,58,81)(20,82,59)(21,60,83)(22,84,61)(23,62,85)(24,86,63)(25,89,110)(26,111,90)(27,91,112)(28,105,92)(29,93,106)(30,107,94)(31,95,108)(32,109,96)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,79,66)(42,67,80)(43,73,68)(44,69,74)(45,75,70)(46,71,76)(47,77,72)(48,65,78)(49,127,130)(50,131,128)(51,121,132)(52,133,122)(53,123,134)(54,135,124)(55,125,136)(56,129,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,70)(2,67)(3,72)(4,69)(5,66)(6,71)(7,68)(8,65)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,94)(18,91)(19,96)(20,93)(21,90)(22,95)(23,92)(24,89)(25,63)(26,60)(27,57)(28,62)(29,59)(30,64)(31,61)(32,58)(33,56)(34,53)(35,50)(36,55)(37,52)(38,49)(39,54)(40,51)(73,115)(74,120)(75,117)(76,114)(77,119)(78,116)(79,113)(80,118)(81,109)(82,106)(83,111)(84,108)(85,105)(86,110)(87,107)(88,112)(97,125)(98,122)(99,127)(100,124)(101,121)(102,126)(103,123)(104,128)(129,137)(130,142)(131,139)(132,144)(133,141)(134,138)(135,143)(136,140)>;

G:=Group( (1,52,84)(2,85,53)(3,54,86)(4,87,55)(5,56,88)(6,81,49)(7,50,82)(8,83,51)(9,135,63)(10,64,136)(11,129,57)(12,58,130)(13,131,59)(14,60,132)(15,133,61)(16,62,134)(17,125,120)(18,113,126)(19,127,114)(20,115,128)(21,121,116)(22,117,122)(23,123,118)(24,119,124)(25,143,47)(26,48,144)(27,137,41)(28,42,138)(29,139,43)(30,44,140)(31,141,45)(32,46,142)(33,66,112)(34,105,67)(35,68,106)(36,107,69)(37,70,108)(38,109,71)(39,72,110)(40,111,65)(73,93,104)(74,97,94)(75,95,98)(76,99,96)(77,89,100)(78,101,90)(79,91,102)(80,103,92), (1,133,22)(2,23,134)(3,135,24)(4,17,136)(5,129,18)(6,19,130)(7,131,20)(8,21,132)(9,124,86)(10,87,125)(11,126,88)(12,81,127)(13,128,82)(14,83,121)(15,122,84)(16,85,123)(25,39,77)(26,78,40)(27,33,79)(28,80,34)(29,35,73)(30,74,36)(31,37,75)(32,76,38)(41,112,102)(42,103,105)(43,106,104)(44,97,107)(45,108,98)(46,99,109)(47,110,100)(48,101,111)(49,114,58)(50,59,115)(51,116,60)(52,61,117)(53,118,62)(54,63,119)(55,120,64)(56,57,113)(65,144,90)(66,91,137)(67,138,92)(68,93,139)(69,140,94)(70,95,141)(71,142,96)(72,89,143), (1,15,117)(2,118,16)(3,9,119)(4,120,10)(5,11,113)(6,114,12)(7,13,115)(8,116,14)(17,64,87)(18,88,57)(19,58,81)(20,82,59)(21,60,83)(22,84,61)(23,62,85)(24,86,63)(25,89,110)(26,111,90)(27,91,112)(28,105,92)(29,93,106)(30,107,94)(31,95,108)(32,109,96)(33,137,102)(34,103,138)(35,139,104)(36,97,140)(37,141,98)(38,99,142)(39,143,100)(40,101,144)(41,79,66)(42,67,80)(43,73,68)(44,69,74)(45,75,70)(46,71,76)(47,77,72)(48,65,78)(49,127,130)(50,131,128)(51,121,132)(52,133,122)(53,123,134)(54,135,124)(55,125,136)(56,129,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,70)(2,67)(3,72)(4,69)(5,66)(6,71)(7,68)(8,65)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,94)(18,91)(19,96)(20,93)(21,90)(22,95)(23,92)(24,89)(25,63)(26,60)(27,57)(28,62)(29,59)(30,64)(31,61)(32,58)(33,56)(34,53)(35,50)(36,55)(37,52)(38,49)(39,54)(40,51)(73,115)(74,120)(75,117)(76,114)(77,119)(78,116)(79,113)(80,118)(81,109)(82,106)(83,111)(84,108)(85,105)(86,110)(87,107)(88,112)(97,125)(98,122)(99,127)(100,124)(101,121)(102,126)(103,123)(104,128)(129,137)(130,142)(131,139)(132,144)(133,141)(134,138)(135,143)(136,140) );

G=PermutationGroup([[(1,52,84),(2,85,53),(3,54,86),(4,87,55),(5,56,88),(6,81,49),(7,50,82),(8,83,51),(9,135,63),(10,64,136),(11,129,57),(12,58,130),(13,131,59),(14,60,132),(15,133,61),(16,62,134),(17,125,120),(18,113,126),(19,127,114),(20,115,128),(21,121,116),(22,117,122),(23,123,118),(24,119,124),(25,143,47),(26,48,144),(27,137,41),(28,42,138),(29,139,43),(30,44,140),(31,141,45),(32,46,142),(33,66,112),(34,105,67),(35,68,106),(36,107,69),(37,70,108),(38,109,71),(39,72,110),(40,111,65),(73,93,104),(74,97,94),(75,95,98),(76,99,96),(77,89,100),(78,101,90),(79,91,102),(80,103,92)], [(1,133,22),(2,23,134),(3,135,24),(4,17,136),(5,129,18),(6,19,130),(7,131,20),(8,21,132),(9,124,86),(10,87,125),(11,126,88),(12,81,127),(13,128,82),(14,83,121),(15,122,84),(16,85,123),(25,39,77),(26,78,40),(27,33,79),(28,80,34),(29,35,73),(30,74,36),(31,37,75),(32,76,38),(41,112,102),(42,103,105),(43,106,104),(44,97,107),(45,108,98),(46,99,109),(47,110,100),(48,101,111),(49,114,58),(50,59,115),(51,116,60),(52,61,117),(53,118,62),(54,63,119),(55,120,64),(56,57,113),(65,144,90),(66,91,137),(67,138,92),(68,93,139),(69,140,94),(70,95,141),(71,142,96),(72,89,143)], [(1,15,117),(2,118,16),(3,9,119),(4,120,10),(5,11,113),(6,114,12),(7,13,115),(8,116,14),(17,64,87),(18,88,57),(19,58,81),(20,82,59),(21,60,83),(22,84,61),(23,62,85),(24,86,63),(25,89,110),(26,111,90),(27,91,112),(28,105,92),(29,93,106),(30,107,94),(31,95,108),(32,109,96),(33,137,102),(34,103,138),(35,139,104),(36,97,140),(37,141,98),(38,99,142),(39,143,100),(40,101,144),(41,79,66),(42,67,80),(43,73,68),(44,69,74),(45,75,70),(46,71,76),(47,77,72),(48,65,78),(49,127,130),(50,131,128),(51,121,132),(52,133,122),(53,123,134),(54,135,124),(55,125,136),(56,129,126)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,70),(2,67),(3,72),(4,69),(5,66),(6,71),(7,68),(8,65),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(17,94),(18,91),(19,96),(20,93),(21,90),(22,95),(23,92),(24,89),(25,63),(26,60),(27,57),(28,62),(29,59),(30,64),(31,61),(32,58),(33,56),(34,53),(35,50),(36,55),(37,52),(38,49),(39,54),(40,51),(73,115),(74,120),(75,117),(76,114),(77,119),(78,116),(79,113),(80,118),(81,109),(82,106),(83,111),(84,108),(85,105),(86,110),(87,107),(88,112),(97,125),(98,122),(99,127),(100,124),(101,121),(102,126),(103,123),(104,128),(129,137),(130,142),(131,139),(132,144),(133,141),(134,138),(135,143),(136,140)]])

66 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B4C6A···6E6F6G6H6I6J6K8A8B8C8D12A···12J12K···12R12S12T24A···24P
order1223···333334446···6666666888812···1212···12121224···24
size11182···2444411182···2444418186654542···24···418186···6

66 irreducible representations

dim111111222222222444
type++++++-+-+-
imageC1C2C2C2C4C4S3S3Dic3D6Dic3M4(2)C4×S3C8⋊S3C4.Dic3S32S3×Dic3D6.Dic3
kernelC338M4(2)C32×C3⋊C8C337C8C12×C3⋊S3C3×C3⋊Dic3C6×C3⋊S3C3×C3⋊C8C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C33C3×C6C32C32C12C6C3
# reps1111224115128164448

Matrix representation of C338M4(2) in GL8(𝔽73)

10000000
01000000
000720000
001720000
000007200
000017200
00000010
00000001
,
10000000
01000000
000720000
001720000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
673000000
706000000
0054480000
0029190000
000007200
000072000
00000010
0000007272
,
01000000
10000000
0054480000
0029190000
00000100
00001000
00000010
00000001

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[67,70,0,0,0,0,0,0,3,6,0,0,0,0,0,0,0,0,54,29,0,0,0,0,0,0,48,19,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,54,29,0,0,0,0,0,0,48,19,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C338M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes_8M_4(2)
% in TeX

G:=Group("C3^3:8M4(2)");
// GroupNames label

G:=SmallGroup(432,434);
// by ID

G=gap.SmallGroup(432,434);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽